UNIVERSITY OF NORTH BENGAL
B.Sc. Honours 2nd Semester Examination, 2023

GE1-P2-MATHEMATICS

(Revised Syllabus 2023)

The figures in the margin indicate full marks.

The question paper contains MATHGE-II, MATHGE-III \& MATHGE-V.
 The candidates are required to answer any one from the three courses.
 Candidates should mention it clearly on the Answer Book.

MATHGE-II

Algebra

GROUP-A

1. Answer any four questions from the following:
$3 \times 4=12$
(a) If α be a multiple root of order 3 of the equation $x^{4}+b x^{3}+c x+d=0(d \neq 0)$, then show that $\alpha=\frac{-8 d}{3 c}$.
(b) Applying Descarte's rule of signs, find the nature of the roots of

$$
\begin{equation*}
x^{6}+x^{4}+x^{2}+2 x+5=0 \tag{3}
\end{equation*}
$$

(c) Find the product of all values of $(1+i)^{4 / 5}$.
(d) If a, b, c be three positive real numbers, then show that $\left(\frac{a+b+c}{3}\right)^{3} \geq a\left(\frac{b+c}{2}\right)^{2}$.
(e) Verify Cayley-Hamilton theorem for the square matrix $\left(\begin{array}{ll}2 & 1 \\ 0 & 5\end{array}\right)$.
(f) Express $\frac{1+i \sqrt{3}}{1-i}$ in the polar form and hence find the value of $\sin \frac{5 \pi}{12}$.

GROUP-B

Answer any four questions from the following

2. If $x=\log \tan \left(\frac{\pi}{4}+\frac{y}{2}\right)$, then prove that $y=-i \log \tan \left(\frac{\pi}{4}+i \frac{x}{2}\right)$.
3. Reduce the equation $x^{3}-3 x^{2}+12 x+16=0$ to its standard form and then solve the equation by Cardon's method.
4. Let M be an 3×3 real matrix with eigen values $2,3,1$ and the corresponding eigen vectors $(1,2,1)^{t},(0,1,1)^{t},(1,1,1)^{t}$ respectively. Determine the matrix M.
5. Let a, b, c, d be positive real numbers not all equal. Show that

$$
(a+b+c+d)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)>16
$$

UG/CBCS/B.Sc./Hons./2nd Sem./Mathematics/MATHGE2/Revised \& Old/2023

6. Determine the conditions for which the following system of equations

$$
\begin{aligned}
& x+y+z=b \\
& 2 x+y+3 z=b+1 \\
& 5 x+2 y+9 z=b^{2}
\end{aligned}
$$

has (i) only one solution, (ii) no solution, (iii) many solutions.
7. Let S be a set containing n elements, where n is a positive integer. If r is an integer such that $0 \leq r \leq n$, then show that the numbers of subsets of S containing exactly r elements is $\frac{n!}{r!(n-r)!}$.

GROUP-C

Answer any two questions from the following

8. (a) State and prove division algorithm.
(b) State the well ordering principle. Show that $2^{2 n+1}-9 n^{2}+3 n-2$ is divisible by 54 .
9. (a) If $\alpha, \beta, \gamma, \delta$ be the roots of $x^{4}-3 x^{3}+4 x^{2}-5 x+6=0$, show that the value of $\left(\alpha^{2}+3\right)\left(\beta^{2}+3\right)\left(\gamma^{2}+3\right)\left(\delta^{2}+3\right)$ is 57 .
(b) If $a_{1}, a_{2}, a_{3}, \cdots \cdots, a_{n}$ be n positive real numbers, then show that $\frac{s}{s-a_{1}}+\frac{s}{s-a_{2}}+\frac{s}{s-a_{3}}+\cdots \cdots+\frac{s}{s-a_{n}} \geq \frac{n^{2}}{n-1}$, where $s=a_{1}+a_{2}+a_{3}+\cdots \cdots+a_{n}$.
10.(a) Show that the relation $a \equiv b(\bmod 5)$ is an equivalence relation.
(b) If $\log \sin (\theta+i \phi)=\alpha+i \beta$, then prove that $2 \cos 2 \theta=e^{2 \phi}+e^{-2 \phi}-4 e^{2 \alpha}$ and $\cos (\theta-\beta)=e^{2 \phi} \cos (\theta+\beta)$.
11.(a) Find the eigen values and the corresponding eigen vectors of the matrix

$$
\left(\begin{array}{rrr}
-2 & 2 & -3 \\
2 & 1 & -6 \\
-1 & 2 & 0
\end{array}\right)
$$

Further find the algebraic and geometric multiplicities of the eigen values.
(b) If $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$, then show that for every integer $n(\geq 3), A^{n}=A^{n-2}+A^{2}-I$

Hence find A^{50}.

MATHGE-III

Differential Equation and Vector Calculus

GROUP-A

Answer any four questions

1. Show that the functions $\left\{e^{x}, e^{2 x}, e^{3 x}\right\}$ are linearly independent solutions of the differential equation $\frac{d^{3} y}{d x^{3}}-6 \frac{d^{2} y}{d x^{2}}+11 \frac{d y}{d x}-6 y=e^{2 x}$.

UG/CBCS/B.Sc./Hons./2nd Sem./Mathematics/MATHGE2/Revised \& Old/2023

2. Solve: $\frac{d^{4} y}{d x^{4}}+m^{4} y=0$
3. For what value of k, the straight lines $\vec{r}=(1,2,3)+t(2,3,4)$ and $\vec{r}=(k, 3,4)+s(3,4,5)$ (where t, s are scalars) are coplanar.
4. Evaluate $\int_{1}^{2} \vec{r} \times \frac{d^{2} \vec{r}}{d t^{2}} d t$, where $\vec{r}=5 t^{2} \hat{i}+t \hat{j}-t^{3} \hat{k}$.
5. Solve the initial value problem $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=0, y=\frac{d y}{d x}=3$ at $x=0$.
6. Find particular integral of $\left(D^{3}-D^{2}+3 D+5\right) y=e^{x} \cos x$.

GROUP-B

Answer any four questions
7. Given a vector field $\vec{V}=x \hat{i}+y \hat{j}+z \hat{k}$ in E^{3}. Find $\operatorname{curl}\left(\frac{\vec{V}}{|\vec{V}|}\right)$.
8. Let $\vec{F}=x y \hat{i}+\left(x^{2}+y^{2}\right) \hat{j}$. Then obtain $\int_{\Gamma} \vec{F} \cdot d \vec{r}$, where Γ is the arc of the parabola $y=x^{2}-4$ from $(2,0)$ to $(4,12)$.
9. Solve $\left(D^{2}+3 D+2\right) y=x+\cos x$ by method of undetermined co-efficient.
10. Solve the differential equation $\frac{d^{2} x}{d t^{2}}-\mu x=0$ with the condition $x=a, \frac{d x}{d t}=-V$ when $t=0$.
11. Solve the system of differential equation $\frac{d x}{d t}+2 x-3 y=t,-3 x+\frac{d y}{d t}+2 y=e^{2 t}$.
12. Solve $\left(D^{4}-4 D^{2}-5\right) y=e^{x}(x+\cos x)$ using D operator.

GROUP-C

Answer any two questions

13.(a) Solve: $\left(D^{3}-5 D^{2}+7 D-3\right) y=e^{2 x} \cosh x$
(b) Solve: $\frac{d x}{d t}-\frac{d y}{d t}+3 x=\sin t ; \frac{d x}{d t}+y=\cos t$, given that $x=1, y=0$ at $t=0$.
14.(a) Find the series solution of $4 x \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=0$.
(b) If \vec{r} be a position vector of a point and $\phi=\frac{1}{|\vec{r}|}$, then show that $\nabla \phi=-\frac{\vec{r}}{|\vec{r}|^{3}}$.
15.(a) If $F=\phi \operatorname{grad} \phi$, then show that $F \cdot \operatorname{curl} F=0$.
(b) If $\vec{F}=\left(3 x^{2}+6 y\right) \hat{i}-14 y z \hat{j}+20 z x^{3} \hat{k}$, then evaluate $\int_{C} \vec{F} \cdot d \vec{r}$, from $(0,0,0)$ to $(1,1,1)$ along the curve $x=t, y=t^{2}, z=t^{3}$.

UG/CBCS/B.Sc./Hons./2nd Sem./Mathematics/MATHGE2/Revised \& Old/2023

16.(a) Solve $\left(x^{2} D^{2}-x D+4\right) y=\cos (\log x)+x \sin (\log x)$.
(b) Solve the following differential equation using method of variation of parameter

$$
\left(D^{2}-2 D+2\right) y=e^{x} \tan x
$$

MATHGE-V
 Numerical Methods
 GROUP-A

1. Answer any four questions from the following:
(a) Prove that $\frac{\Delta}{\nabla}-\frac{\nabla}{\Delta}=\nabla+\Delta$, where Δ and ∇ have their usual meaning.
(b) Define the degree of precision of a quadrature formula for numerical integration.

What is the degree of precision of Simpson's $\frac{1}{3}^{\text {rd }}$ rule?
(c) Find the relative error in computation of $x+y$ for $x=11.75$ and $y=7.23$ having absolute errors $\Delta x=0.002$ and $\Delta y=0.005$ respectively.
(d) What is the geometric representation of the Trapezoidal rule for integrating $\int_{a}^{b} f(x) d x ?$
(e) If $h=1$ then find the value of $\Delta^{3}(1-x)(1-2 x)(1-3 x)$.
(f) Write down the equation $x^{3}+2 x-10=0$ in the form $x=\phi(x)$ such that the iterative scheme about $x=2$ converges.

GROUP-B

Answer any four questions from the following

2. If a number be rounded to n correct significant figures, then prove that relative error is less than $\frac{1}{k \times 10^{n-1}}$.
3. The third order differences of a function $f(x)$ are constant and $\int_{-1}^{1} f(x) d x=k\left[f(0)+f\left(\frac{1}{\sqrt{2}}\right)+f\left(-\frac{1}{\sqrt{2}}\right)\right]$, then find the value of k.
4. Using Regula-Falsi Method, find a root of $x^{3}+2 x+2=0$, correct up to three significant figures.
5. Solve the following differential equation for $x=0.02$ by taking step length $h=0.01$ by modified Euler's method:

$$
\frac{d y}{d x}=x^{2}+y, y=1 \text { when } x=0
$$

6. Establish Newton's backward interpolation formula.

UG/CBCS/B.Sc./Hons./2nd Sem./Mathematics/MATHGE2/Revised \& Old/2023

7. Solve the system by Gauss-Seidel iteration method:

$$
\begin{aligned}
& x+y+4 z=9 \\
& 8 x-3 y+2 z=20 \\
& 4 x+11 y-z=33
\end{aligned}
$$

GROUP-C

Answer any two questions from the following
8. (a) Estimate the missing term in the following table:

x	0	1	2	3	4
$f(x)$	1	3	9	-	81

(b) Explain the geometrical interpretation of Simpson's $\frac{1}{3}^{\text {rd }}$ rule.
(c) Show that number of multiplications and divisions for the linear system of n equations having n unknowns by elimination method is about $n^{3} / 3$.
9. (a) Evaluate $f(x)$ for $x=0.07$ using the given values:

x	0.00	0.10	0.20	0.30	0.40
$f(x)$	1.0000	1.2214	1.4918	1.8221	2.2255

(b) Using Runge-Kutta method of order 2 to calculate $y(0.6)$ for the equation $\frac{d y}{d x}=x+y^{2}, y(0)=1$ taking $h=0.2$.
10.(a) Deduce an expression for the remainder in polynomial interpolation of a function $f(x)$ with nodes $x_{0}, x_{1}, x_{2}, \cdots \cdots, x_{n}$.
(b) Find the value $\int_{1}^{5} \log _{10} x d x$ taking 8 sub-intervals, correct up to four decimal places by Trapezoidal rule.
11.(a) Compute the values of the unknowns in the system of equations by Gauss Jordan's matrix inversion method

$$
\begin{aligned}
& 3 x+4 y-2 z=15 \\
& 5 x+2 y+z=18 \\
& 2 x+3 y+3 z=10
\end{aligned}
$$

(b) Find the value of $\int_{0}^{1} \frac{d x}{1+x^{2}}$ taking 5-sub-intervals by Simpson's $\frac{3^{\text {th }}}{8}$ rule, correct up to four significant figures.
\qquad

UNIVERSITY OF NORTH BENGAL
B.Sc. Honours 2nd Semester Examination, 2023

GE1-P2-MATHEMATICS

(Old Syllabus 2018)
Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks.
The question paper contains MATHGE-I, MATHGE-II, MATHGE-III,
MATHGE-IV \& MATHGE-V.
The candidates are required to answer any one from the five courses.
Candidates should mention it clearly on the Answer Book.

MATHGE-I

Cal. Geo. and DE.
GROUP-A

1. Answer any four questions from the following:
(a) If the graph of $f(x)=\frac{x^{2}-3 x+4}{c x^{2}-x-10}$ has horizontal asymptote at $y=\frac{1}{2}$, find c.
(b) Find $\lim _{x \rightarrow 0} \frac{x^{2} \sin (1 / x)}{\sin x}$.
(c) Show that the conic $x^{2}+2 x y+y^{2}-2 x-1=0$ is parabola.
(d) Show that origin is a point of inflexion on the curve $y=x \cos 2 x$.
(e) When the axes are turned through an angle, the expression $a x+b y$ becomes3 $a^{\prime} x^{\prime}+b^{\prime} y^{\prime}$ referred to new ones. Show that $a+b=a^{\prime}+b^{\prime}$.
(f) Find the equation of the sphere for which the circle $x^{2}+y^{2}+z^{2}+7 y-2 z+2=0$, $2 x+3 y+4 z=8$ is a great circle.

GROUP-B

Answer any four questions from the following

$6 \times 4=24$
2. Trace the curve $x\left(x^{2}+y^{2}\right)=a\left(x^{2}-y^{2}\right), a>0$.
3. Show that the straight line $\frac{l}{r}=A \cos \theta+B \sin \theta$ touches the conic $\frac{l}{r}=1+e \cos \theta$, if $(A-e)^{2}+B^{2}=1$.
4. If $y=\sin ^{-1} x$, then show that $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-n^{2} y_{n}=0$.
5. Solve: $\left(x^{2}+y^{2}+2 x\right) d x+2 y d y=0$
6. Solve: $x^{3} \frac{d y}{d x}-x^{2} y+y^{4} \cos x=0 \quad 6$
7. Find the envelope of family of co-axial ellipses $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where the parameters are connected by the relation $a+b=c$ (c being fixed).

GROUP-C

Answer any two questions from the following

8. (a) Find the equation of the cylinder whose generating line is parallel to the z axis and

6 the guiding curve is $x^{2}+y^{2}=z, x+y+z=1$.
(b) Find the reduction formula for $\int \sin ^{n} x d x$ and hence find $\int_{0}^{\pi / 2} \sin ^{5} x d x$.
9. (a) Find the values of a, b and c for which $\lim _{x \rightarrow 0} \frac{a e^{x}-b \cos x+c e^{-x}}{x \sin x}=2$.
(b) If a plane passes through a fixed point (α, β, γ) and cuts the axes is P, Q, R. Show that the locus of the centre of the sphere passing through the origin and points P, Q, R is $\frac{\alpha}{x}+\frac{\beta}{y}+\frac{\gamma}{z}=2$.
10.(a) Solve: $\frac{d y}{d x}+x \sin 2 y=x^{3} \cos ^{2} y$
(b) Solve: $(x+1) \frac{d y}{d x}-n y=e^{x}(x+1)^{n+1}$
11.(a) Discuss the nature of the surface $4 x^{2}-y^{2}-z^{2}+2 y z-8 x-4 y+8 z-2=0$.

Reduce it to its canonical form.
(b) Find the area of the surface obtained by revolving the parametric curve defined by $x(t)=3 t-t^{3}, y(t)=3 t^{2}, 0 \leq t \leq 1$ about the x-axis.
(c) Prove that the area bounded between one arch of the cycloid $x=a(t-\sin t), y=a(1-\cos t)$ and the x-axis is $3 \pi a^{2}$.

MATHGE-II

Algebra

GROUP-A

1. Answer any four questions from the following:
(a) If α be a multiple root of order 3 of the equation $x^{4}+b x^{3}+c x+d=0(d \neq 0)$,

3

$$
x^{6}+x^{4}+x^{2}+2 x+5=0
$$

(c) Find the product of all values of $(1+i)^{4 / 5}$.
(d) If a, b, c be three positive real numbers, then show that $\left(\frac{a+b+c}{3}\right)^{3} \geq a\left(\frac{b+c}{2}\right)^{2}$.
(e) Verify Cayley-Hamilton theorem for the square matrix $\left(\begin{array}{ll}2 & 1 \\ 0 & 5\end{array}\right)$.
(f) Express $\frac{1+i \sqrt{3}}{1-i}$ in the polar form and hence find the value of $\sin \frac{5 \pi}{12}$. then show that $\alpha=\frac{-8 d}{3 c}$.
(b) Applying Descarte's rule of signs, find the nature of the roots of

UG/CBCS/B.Sc./Hons./2nd Sem./Mathematics/MATHGE2/Revised \& Old/2023

GROUP-B

Answer any four questions from the following

2. If $x=\log \tan \left(\frac{\pi}{4}+\frac{y}{2}\right)$, then prove that $y=-i \log \tan \left(\frac{\pi}{4}+i \frac{x}{2}\right)$.
3. Reduce the equation $x^{3}-3 x^{2}+12 x+16=0$ to its standard form and then solve the equation by Cardon's method.
4. Let M be an 3×3 real matrix with eigen values $2,3,1$ and the corresponding eigen vectors $(1,2,1)^{t},(0,1,1)^{t},(1,1,1)^{t}$ respectively. Determine the matrix M.
5. Let a, b, c, d be positive real numbers not all equal. Show that

$$
\begin{equation*}
(a+b+c+d)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)>16 \tag{6}
\end{equation*}
$$

6. Determine the conditions for which the following system of equations

$$
\begin{align*}
& x+y+z=b \tag{6}\\
& 2 x+y+3 z=b+1 \\
& 5 x+2 y+9 z=b^{2}
\end{align*}
$$

has (i) only one solution, (ii) no solution, (iii) many solutions.
7. Let S be a set containing n elements, where n is a positive integer. If r is an integer such that $0 \leq r \leq n$, then show that the numbers of subsets of S containing exactly r elements is $\frac{n!}{r!(n-r)!}$.

GROUP-C

Answer any two questions from the following
8. (a) State and prove division algorithm.

6
(b) State the well ordering principle. Show that $2^{2 n+1}-9 n^{2}+3 n-2$ is divisible by 54 .
9. (a) If $\alpha, \beta, \gamma, \delta$ be the roots of $x^{4}-3 x^{3}+4 x^{2}-5 x+6=0$, show that the value of $\left(\alpha^{2}+3\right)\left(\beta^{2}+3\right)\left(\gamma^{2}+3\right)\left(\delta^{2}+3\right)$ is 57 .
(b) If $a_{1}, a_{2}, a_{3}, \cdots \cdots, a_{n}$ be n positive real numbers, then show that $\frac{s}{s-a_{1}}+\frac{s}{s-a_{2}}+\frac{s}{s-a_{3}}+\cdots \cdots+\frac{s}{s-a_{n}} \geq \frac{n^{2}}{n-1}$, where $s=a_{1}+a_{2}+a_{3}+\cdots \cdots+a_{n}$.
10.(a) Show that the relation $a \equiv b(\bmod 5)$ is an equivalence relation.
(b) If $\log \sin (\theta+i \phi)=\alpha+i \beta$, then prove that $2 \cos 2 \theta=e^{2 \phi}+e^{-2 \phi}-4 e^{2 \alpha}$ and $\cos (\theta-\beta)=e^{2 \phi} \cos (\theta+\beta)$.
11.(a) Find the eigen values and the corresponding eigen vectors of the matrix

$$
\left(\begin{array}{rrr}
-2 & 2 & -3 \\
2 & 1 & -6 \\
-1 & 2 & 0
\end{array}\right)
$$

Further find the algebraic and geometric multiplicities of the eigen values.
(b) If $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$, then show that for every integer $n(\geq 3), A^{n}=A^{n-2}+A^{2}-I$

Hence find A^{50}.

MATHGE-III

Differential Equation and Vector Calculus

GROUP-A
Answer any four questions

1. Show that the functions $\left\{e^{x}, e^{2 x}, e^{3 x}\right\}$ are linearly independent solutions of the differential equation $\frac{d^{3} y}{d x^{3}}-6 \frac{d^{2} y}{d x^{2}}+11 \frac{d y}{d x}-6 y=e^{2 x}$.
2. Solve: $\frac{d^{4} y}{d x^{4}}+m^{4} y=0$
3. For what value of k, the straight lines $\vec{r}=(1,2,3)+t(2,3,4)$ and $\vec{r}=(k, 3,4)+s(3,4,5)$ (where t, s are scalars) are coplanar.
4. Evaluate $\int_{1}^{2} \vec{r} \times \frac{d^{2} \vec{r}}{d t^{2}} d t$, where $\vec{r}=5 t^{2} \hat{i}+t \hat{j}-t^{3} \hat{k}$.
5. Solve the initial value problem $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=0, y=\frac{d y}{d x}=3$ at $x=0$.
6. Find particular integral of $\left(D^{3}-D^{2}+3 D+5\right) y=e^{x} \cos x$.

GROUP-B

Answer any four questions
7. Given a vector field $\vec{V}=x \hat{i}+y \hat{j}+z \hat{k}$ in E^{3}. Find curl $\left(\frac{\vec{V}}{|\vec{V}|}\right)$.
8. Let $\vec{F}=x y \hat{i}+\left(x^{2}+y^{2}\right) \hat{j}$. Then obtain $\int_{\Gamma} \vec{F} \cdot d \vec{r}$, where Γ is the arc of the parabola $y=x^{2}-4$ from $(2,0)$ to $(4,12)$.
9. Solve $\left(D^{2}+3 D+2\right) y=x+\cos x$ by method of undetermined co-efficient.
10. Solve the differential equation $\frac{d^{2} x}{d t^{2}}-\mu x=0$ with the condition $x=a, \frac{d x}{d t}=-V$ when $t=0$.
11. Solve the system of differential equation $\frac{d x}{d t}+2 x-3 y=t,-3 x+\frac{d y}{d t}+2 y=e^{2 t}$.
12. Solve $\left(D^{4}-4 D^{2}-5\right) y=e^{x}(x+\cos x)$ using D operator.

GROUP-C

Answer any two questions
13.(a) Solve: $\left(D^{3}-5 D^{2}+7 D-3\right) y=e^{2 x} \cosh x$
(b) Solve: $\frac{d x}{d t}-\frac{d y}{d t}+3 x=\sin t ; \frac{d x}{d t}+y=\cos t$, given that $x=1, y=0$ at $t=0$.
14.(a) Find the series solution of $4 x \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=0$.
(b) If \vec{r} be a position vector of a point and $\phi=\frac{1}{|\vec{r}|}$, then show that $\nabla \phi=-\frac{\vec{r}}{|\vec{r}|^{3}}$.

UG/CBCS/B.Sc./Hons./2nd Sem./Mathematics/MATHGE2/Revised \& Old/2023

15.(a) If $F=\phi \operatorname{grad} \phi$, then show that $F \cdot \operatorname{curl} F=0$.
(b) If $\vec{F}=\left(3 x^{2}+6 y\right) \hat{i}-14 y z \hat{j}+20 z x^{3} \hat{k}$, then evaluate $\int_{C} \vec{F} \cdot d \vec{r}$, from $(0,0,0)$ to $(1,1,1)$ along the curve $x=t, y=t^{2}, z=t^{3}$.
16.(a) Solve $\left(x^{2} D^{2}-x D+4\right) y=\cos (\log x)+x \sin (\log x)$.
(b) Solve the following differential equation using method of variation of parameter

$$
\left(D^{2}-2 D+2\right) y=e^{x} \tan x
$$

MATHGE-IV

Group Theory

GROUP-A

Answer any four questions from the following

1. Let H_{1}, H_{2} be two subgroups of a group G. Prove that $H_{1} \cap H_{2}$ is also a subgroup of G.
2. Find all generators of the group $\left(\mathbb{Z}_{8},+_{8}\right)$.
3. Show that a group of even order has an element of order 2 and that the number of elements of order 2 is odd.
4. If H and K are two normal subgroups of a group G such that $H \cap K=\{e\}$, then show that $h k=k h \forall h \in H, k \in K$.
5. Let \mathbb{R}^{+}be the group of positive real numbers under multiplication and \mathbb{R} the group of all real numbers under addition. Then show that the map $\theta: \mathbb{R}^{+} \rightarrow \mathbb{R}$ such that $\theta(x)=\log _{e} x$ is an isomorphism.
6. If G and G^{\prime} be two groups and $f: G \rightarrow G^{\prime}$ be a homomorphism then show that $f(e)=e^{\prime}$.

GROUP-B

Answer any four questions from the following

7. Let a be an element of a finite group G. Prove that $O(a) \mid O(G)$.
8. Let H be a subgroup of a group G. Then prove that $H a=H b$ if and only if $a b^{-1} \in H$, where $a, b \in G$.
9. Define centre of a group. Prove that the centre of a group G is a subgroup of G.
10. Prove that the set H forms a commutative group with respect to matrix multiplication, where $H=\left\{\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right): a \in \mathbb{R}\right.$ and $\left.a^{2}+b^{2}=1\right\}$.
11. Prove that a non-empty subset H of a group G is a subgroup of G if and only if $a, b \in H \Rightarrow a b^{-1} \in H$.
12. Prove that the order of a cyclic group is equal to the order of its generator.

GROUP-C

Answer any two questions from the following
13.(a) Prove that every group G is isomorphic to a permutation group.
(b) Let $f: G \rightarrow G^{\prime}$ be a group homomorphism. Let $a \in G$ such that $O(a)=n$ and

UG/CBCS/B.Sc./Hons./2nd Sem./Mathematics/MATHGE2/Revised \& Old/2023

$O(f(a))=m$. Show that $O(f(a)) \mid O(a)$ and f is one-one iff $m=n$.
14.(a) If H and K be subgroups of a group G, then show that $O(H K)=\frac{O(H) O(K)}{O(H \cap K)}$.
(b) If $f: G \rightarrow G^{\prime}$ be a group homomorphism, then show that $\operatorname{ker} f$ is a normal subgroup of G.
15.(a) Prove that every quotient group of a cyclic group is cyclic.
(b) Prove that a group homomorphism $f: G \rightarrow G^{\prime}$ is one-one iff $\operatorname{ker} f=\{e\}$.
16.(a) Find all the group homomorphisms from $\mathbb{Z}_{20} \rightarrow \mathbb{Z}_{8}$. How many of these are onto?
(b) (i) Prove that a group G is commutative iff $(a b)^{-1}=a^{-1} b^{-1}, \forall a, b \in G$. $4+2$
(ii) Examine whether (\mathbb{Z}, \circ) forms a group with respect to the composition ' \circ ' by $a \circ b=a+b+a b ; a, b \in \mathbb{Z}$.

MATHGE-V

Numerical Methods

GROUP-A

1. Answer any four questions from the following:
(a) Prove that $\frac{\Delta}{\nabla}-\frac{\nabla}{\Delta}=\nabla+\Delta$, where Δ and ∇ have their usual meaning.
(b) Define the degree of precision of a quadrature formula for numerical integration. What is the degree of precision of Simpson's $\frac{1}{3}^{\text {rd }}$ rule?
(c) Find the relative error in computation of $x+y$ for $x=11.75$ and $y=7.23$ having absolute errors $\Delta x=0.002$ and $\Delta y=0.005$ respectively.
(d) What is the geometric representation of the Trapezoidal rule for integrating $\int_{a}^{b} f(x) d x$?
(e) If $h=1$ then find the value of $\Delta^{3}(1-x)(1-2 x)(1-3 x)$.
(f) Write down the equation $x^{3}+2 x-10=0$ in the form $x=\phi(x)$ such that the iterative scheme about $x=2$ converges.

GROUP-B

Answer any four questions from the following

2. If a number be rounded to n correct significant figures, then prove that relative error is less than $\frac{1}{k \times 10^{n-1}}$.
3. The third order differences of a function $f(x)$ are constant and $\int_{-1}^{1} f(x) d x=k\left[f(0)+f\left(\frac{1}{\sqrt{2}}\right)+f\left(-\frac{1}{\sqrt{2}}\right)\right]$, then find the value of k.
4. Using Regula-Falsi Method, find a root of $x^{3}+2 x+2=0$, correct up to three significant figures.
5. Solve the following differential equation for $x=0.02$ by taking step length

UG/CBCS/B.Sc./Hons./2nd Sem./Mathematics/MATHGE2/Revised \& Old/2023

$h=0.01$ by modified Euler's method:

$$
\frac{d y}{d x}=x^{2}+y, y=1 \text { when } x=0
$$

6. Establish Newton's backward interpolation formula.
7. Solve the system by Gauss-Seidel iteration method:

$$
\begin{aligned}
& x+y+4 z=9 \\
& 8 x-3 y+2 z=20 \\
& 4 x+11 y-z=33
\end{aligned}
$$

GROUP-C

$$
\text { Answer any two questions from the following } \quad 12 \times 2=24
$$

8. (a) Estimate the missing term in the following table:

x	0	1	2	3	4
$f(x)$	1	3	9	-	81

(b) Explain the geometrical interpretation of Simpson's $\frac{1}{3}^{\text {rd }}$ rule.
(c) Show that number of multiplications and divisions for the linear system of n equations having n unknowns by elimination method is about $n^{3} / 3$.
9. (a) Evaluate $f(x)$ for $x=0.07$ using the given values:

x	0.00	0.10	0.20	0.30	0.40
$f(x)$	1.0000	1.2214	1.4918	1.8221	2.2255

(b) Using Runge-Kutta method of order 2 to calculate $y(0.6)$ for the equation $\frac{d y}{d x}=x+y^{2}, y(0)=1$ taking $h=0.2$.
10.(a) Deduce an expression for the remainder in polynomial interpolation of a function $f(x)$ with nodes $x_{0}, x_{1}, x_{2}, \cdots \cdots, x_{n}$.
(b) Find the value $\int_{1}^{5} \log _{10} x d x$ taking 8 sub-intervals, correct up to four decimal places by Trapezoidal rule.
11.(a) Compute the values of the unknowns in the system of equations by Gauss Jordan's matrix inversion method

$$
\begin{aligned}
& 3 x+4 y-2 z=15 \\
& 5 x+2 y+z=18 \\
& 2 x+3 y+3 z=10
\end{aligned}
$$

(b) Find the value of $\int_{0}^{1} \frac{d x}{1+x^{2}}$ taking 5 -sub-intervals by Simpson's $\frac{3}{8}^{\text {th }}$ rule, correct up to four significant figures.

