

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 2nd Semester Examination, 2023

GE1-P2-MATHEMATICS

(REVISED SYLLABUS 2023)

Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks.

The question paper contains MATHGE-II, MATHGE-III & MATHGE-V. The candidates are required to answer any one from the three courses. Candidates should mention it clearly on the Answer Book.

MATHGE-II

ALGEBRA

GROUP-A

1.		Answer any <i>four</i> questions from the following:	$3 \times 4 = 12$
	(a)	If α be a multiple root of order 3 of the equation $x^4 + bx^3 + cx + d = 0$ $(d \neq 0)$,	3
		then show that $\alpha = \frac{-8d}{3c}$.	
	(b)	Applying Descarte's rule of signs, find the nature of the roots of	3
		$x^6 + x^4 + x^2 + 2x + 5 = 0$	
	(c)	Find the product of all values of $(1+i)^{4/5}$.	3
	(d)	If <i>a</i> , <i>b</i> , <i>c</i> be three positive real numbers, then show that $\left(\frac{a+b+c}{3}\right)^3 \ge a\left(\frac{b+c}{2}\right)^2$.	3
	(e)	Verify Cayley-Hamilton theorem for the square matrix $\begin{pmatrix} 2 & 1 \\ 0 & 5 \end{pmatrix}$.	3
	(f)	Express $\frac{1+i\sqrt{3}}{1-i}$ in the polar form and hence find the value of $\sin \frac{5\pi}{12}$.	3
		GROUP-B	
		Answer any <i>four</i> questions from the following	$6 \times 4 = 24$
2.		If $x = \log \tan \left(\frac{\pi}{4} + \frac{y}{2}\right)$, then prove that $y = -i \log \tan \left(\frac{\pi}{4} + i \frac{x}{2}\right)$.	6
3.		Reduce the equation $x^3 - 3x^2 + 12x + 16 = 0$ to its standard form and then solve the equation by Cardon's method.	6
4.		Let <i>M</i> be an 3×3 real matrix with eigen values 2, 3, 1 and the corresponding eigen vectors $(1, 2, 1)^t$, $(0, 1, 1)^t$, $(1, 1, 1)^t$ respectively. Determine the matrix <i>M</i> .	6

vectors $(1, 2, 1)^t$, $(0, 1, 1)^t$, $(1, 1, 1)^t$ respectively. Determine the matrix M.

5. Let *a*, *b*, *c*, *d* be positive real numbers not all equal. Show that

$$(a+b+c+d)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right) > 16$$
6

6. Determine the conditions for which the following system of equations

$$x + y + z = b;$$

$$2x + y + 3z = b + 1;$$

$$5x + 2y + 9z = b^{2}$$

has (i) only one solution, (ii) no solution, (iii) many solutions.

7. Let *S* be a set containing *n* elements, where *n* is a positive integer. If *r* is an integer 6 such that $0 \le r \le n$, then show that the numbers of subsets of *S* containing exactly *r* elements is $\frac{n!}{r!(n-r)!}$.

GROUP-C

$12 \times 2 = 24$
6
1+5
6
6
6
6
6
1

Further find the algebraic and geometric multiplicities of the eigen values.

(b) If
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
, then show that for every integer $n \ge 3$, $A^n = A^{n-2} + A^2 - I$ 4+2

Hence find A^{50} .

MATHGE-III

DIFFERENTIAL EQUATION AND VECTOR CALCULUS

GROUP-A

Answer any *four* questions

$3 \times 4 = 12$

6

1. Show that the functions $\{e^x, e^{2x}, e^{3x}\}$ are linearly independent solutions of the

differential equation
$$\frac{d^2y}{dx^3} - 6\frac{d^2y}{dx^2} + 11\frac{dy}{dx} - 6y = e^{2x}$$
.

- 2. Solve: $\frac{d^4y}{dx^4} + m^4y = 0$
- 3. For what value of k, the straight lines $\vec{r} = (1, 2, 3) + t(2, 3, 4)$ and $\vec{r} = (k, 3, 4) + s(3, 4, 5)$ (where t, s are scalars) are coplanar.

4. Evaluate
$$\int_{1}^{2} \vec{r} \times \frac{d^2 \vec{r}}{dt^2} dt$$
, where $\vec{r} = 5t^2 \hat{i} + t\hat{j} - t^3 \hat{k}$.

5. Solve the initial value problem
$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 0$$
, $y = \frac{dy}{dx} = 3$ at $x = 0$.

6. Find particular integral of $(D^3 - D^2 + 3D + 5)y = e^x \cos x$.

GROUP-B

Answer any *four* questions

 $6 \times 4 = 24$

 $12 \times 2 = 24$

6+6

6+6

7. Given a vector field
$$\vec{V} = x\hat{i} + y\hat{j} + z\hat{k}$$
 in E^3 . Find $\operatorname{curl}\left(\frac{\vec{V}}{|\vec{V}|}\right)$.

8. Let
$$\vec{F} = xy\hat{i} + (x^2 + y^2)\hat{j}$$
. Then obtain $\int_{\Gamma} \vec{F} \cdot d\vec{r}$, where Γ is the arc of the parabola $y = x^2 - 4$ from (2, 0) to (4, 12).

9. Solve
$$(D^2 + 3D + 2)y = x + \cos x$$
 by method of undetermined co-efficient.

10. Solve the differential equation $\frac{d^2x}{dt^2} - \mu x = 0$ with the condition x = a, $\frac{dx}{dt} = -V$ when t = 0.

11. Solve the system of differential equation
$$\frac{dx}{dt} + 2x - 3y = t$$
, $-3x + \frac{dy}{dt} + 2y = e^{2t}$.

12. Solve
$$(D^4 - 4D^2 - 5)y = e^x(x + \cos x)$$
 using *D* operator.

GROUP-C

Answer any *two* questions

13.(a) Solve:
$$(D^3 - 5D^2 + 7D - 3)y = e^{2x} \cosh x$$

(b) Solve:
$$\frac{dx}{dt} - \frac{dy}{dt} + 3x = \sin t$$
; $\frac{dx}{dt} + y = \cos t$, given that $x = 1$, $y = 0$ at $t = 0$

14.(a) Find the series solution of
$$4x \frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = 0$$
. 8+4

(b) If
$$\vec{r}$$
 be a position vector of a point and $\phi = \frac{1}{|\vec{r}|}$, then show that $\nabla \phi = -\frac{\vec{r}}{|\vec{r}|^3}$

15.(a) If
$$F = \phi \operatorname{grad} \phi$$
, then show that $F \cdot \operatorname{curl} F = 0$.
(b) If $\vec{F} = (3x^2 + 6y)\hat{i} - 14yz\hat{j} + 20zx^3\hat{k}$, then evaluate $\int_C \vec{F} \cdot d\vec{r}$, from (0, 0, 0) to
(1, 1, 1) along the curve $x = t$, $y = t^2$, $z = t^3$.

16.(a) Solve $(x^2D^2 - xD + 4)y = \cos(\log x) + x\sin(\log x)$.

(b) Solve the following differential equation using method of variation of parameter

 $(D^2 - 2D + 2)y = e^x \tan x$

MATHGE-V

NUMERICAL METHODS

GROUP-A

- 1. Answer any *four* questions from the following:
 - (a) Prove that $\frac{\Delta}{\nabla} \frac{\nabla}{\Delta} = \nabla + \Delta$, where Δ and ∇ have their usual meaning.
 - (b) Define the degree of precision of a quadrature formula for numerical integration. What is the degree of precision of Simpson's $\frac{1}{3}^{rd}$ rule?
 - (c) Find the relative error in computation of x + y for x = 11.75 and y = 7.23 having absolute errors $\Delta x = 0.002$ and $\Delta y = 0.005$ respectively.
 - (d) What is the geometric representation of the Trapezoidal rule for integrating $\int_{a}^{b} f(x) dx$?
 - (e) If h=1 then find the value of $\Delta^3(1-x)(1-2x)(1-3x)$.
 - (f) Write down the equation $x^3 + 2x 10 = 0$ in the form $x = \phi(x)$ such that the iterative scheme about x = 2 converges.

GROUP-B

Answer any *four* questions from the following

- 2. If a number be rounded to *n* correct significant figures, then prove that relative error is less than $\frac{1}{k \times 10^{n-1}}$.
- 3. The third order differences of a function f(x) are constant and $\int_{-1}^{1} f(x) dx = k \left[f(0) + f\left(\frac{1}{\sqrt{2}}\right) + f\left(-\frac{1}{\sqrt{2}}\right) \right], \text{ then find the value of } k.$
- 4. Using Regula-Falsi Method, find a root of $x^3 + 2x + 2 = 0$, correct up to three significant figures.
- 5. Solve the following differential equation for x = 0.02 by taking step length h = 0.01 by modified Euler's method:

$$\frac{dy}{dx} = x^2 + y$$
, $y = 1$ when $x = 0$

6. Establish Newton's backward interpolation formula.

 $3 \times 4 = 12$

 $6 \times 4 = 24$

- 7. Solve the system by Gauss-Seidel iteration method:
 - x + y + 4z = 98x 3y + 2z = 204x + 11y z = 33

GROUP-C

Answer any *two* questions from the following $12 \times 2 = 24$

8. (a) Estimate the missing term in the following table:

x	0	1	2	3	4
f(x)	1	3	9	-	81

- (b) Explain the geometrical interpretation of Simpson's $\frac{1}{3}^{rd}$ rule.
- (c) Show that number of multiplications and divisions for the linear system of n equations having n unknowns by elimination method is about $n^3/3$.
- 9. (a) Evaluate f(x) for x = 0.07 using the given values:

x	0.00	0.10	0.20	0.30	0.40
f(x)	1.0000	1.2214	1.4918	1.8221	2.2255

- (b) Using Runge-Kutta method of order 2 to calculate y(0.6) for the equation 6 $\frac{dy}{dx} = x + y^2$, y(0) = 1 taking h = 0.2.
- 10.(a) Deduce an expression for the remainder in polynomial interpolation of a function f(x) with nodes $x_0, x_1, x_2, \dots, x_n$.
 - (b) Find the value $\int_{1}^{5} \log_{10} x \, dx$ taking 8 sub-intervals, correct up to four decimal places 6 by Trapezoidal rule.
- 11.(a) Compute the values of the unknowns in the system of equations by Gauss Jordan's 6 matrix inversion method

$$3x + 4y - 2z = 15$$
$$5x + 2y + z = 18$$
$$2x + 3y + 3z = 10$$

(b) Find the value of $\int_{0}^{1} \frac{dx}{1+x^2}$ taking 5-sub-intervals by Simpson's $\frac{3}{8}$ th rule, correct up 6

×

5

to four significant figures.

3

3

6

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 2nd Semester Examination, 2023

GE1-P2-MATHEMATICS

(OLD SYLLABUS 2018)

Time Allotted: 2 Hours

Full Marks: 60

6

The figures in the margin indicate full marks.

The question paper contains MATHGE-I, MATHGE-II, MATHGE-III, MATHGE-IV & MATHGE-V. The candidates are required to answer any *one* from the *five* courses.

Candidates should mention it clearly on the Answer Book.

MATHGE-I

CAL. GEO. AND DE.

GROUP-A

1.	Answer any <i>four</i> questions from the following:	$3 \times 4 = 12$				
(8	a) If the graph of $f(x) = \frac{x^2 - 3x + 4}{cx^2 - x - 10}$ has horizontal asymptote at $y = \frac{1}{2}$, find c.	3				
(t	b) Find $\lim_{x \to 0} \frac{x^2 \sin(1/x)}{\sin x}.$	3				
(0	c) Show that the conic $x^2 + 2xy + y^2 - 2x - 1 = 0$ is parabola.	3				
(0	1) Show that origin is a point of inflexion on the curve $y = x \cos 2x$.	3				
(6	e) When the axes are turned through an angle, the expression $ax + by$ becomes $a'x' + b'y'$ referred to new ones. Show that $a + b = a' + b'$.	3				
(1	f) Find the equation of the sphere for which the circle $x^2 + y^2 + z^2 + 7y - 2z + 2 = 0$, 2x + 3y + 4z = 8 is a great circle.	3				
	GROUP-B					
Answer any <i>four</i> questions from the following						

2. Trace the curve
$$x(x^2 + y^2) = a(x^2 - y^2)$$
, $a > 0$.

3. Show that the straight line $\frac{l}{r} = A\cos\theta + B\sin\theta$ touches the conic $\frac{l}{r} = 1 + e\cos\theta$, 6 if $(A - e)^2 + B^2 = 1$.

4. If
$$y = \sin^{-1} x$$
, then show that $(1 - x^2)y_{n+2} - (2n+1)xy_{n+1} - n^2 y_n = 0$.

5. Solve:
$$(x^2 + y^2 + 2x) dx + 2y dy = 0$$
 6

6. Solve:
$$x^3 \frac{dy}{dx} - x^2 y + y^4 \cos x = 0$$
 6

7. Find the envelope of family of co-axial ellipses $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where the parameters 6 are connected by the relation a + b = c (*c* being fixed).

GROUP-C

Answer any *two* questions from the following
$$12 \times 2 = 24$$

8. (a) Find the equation of the cylinder whose generating line is parallel to the *z* axis and the guiding curve is $x^2 + y^2 = z$, x + y + z = 1.

(b) Find the reduction formula for
$$\int \sin^n x \, dx$$
 and hence find $\int_0^{\pi/2} \sin^5 x \, dx$. 6

9. (a) Find the values of a, b and c for which
$$\lim_{x \to 0} \frac{ae^x - b\cos x + ce^{-x}}{x\sin x} = 2.$$

(b) If a plane passes through a fixed point (α, β, γ) and cuts the axes is *P*, *Q*, *R*. 6 Show that the locus of the centre of the sphere passing through the origin and points *P*, *Q*, *R* is $\frac{\alpha}{x} + \frac{\beta}{y} + \frac{\gamma}{z} = 2$.

10.(a) Solve:
$$\frac{dy}{dx} + x \sin 2y = x^3 \cos^2 y$$
 6

(b) Solve:
$$(x+1)\frac{dy}{dx} - ny = e^x(x+1)^{n+1}$$
 6

- 11.(a) Discuss the nature of the surface $4x^2 y^2 z^2 + 2yz 8x 4y + 8z 2 = 0$. 6 Reduce it to its canonical form.
 - (b) Find the area of the surface obtained by revolving the parametric curve defined by 3 $x(t) = 3t t^3$, $y(t) = 3t^2$, $0 \le t \le 1$ about the *x*-axis.
 - (c) Prove that the area bounded between one arch of the cycloid 3 $x = a(t \sin t), y = a(1 \cos t)$ and the x-axis is $3\pi a^2$.

MATHGE-II

ALGEBRA

GROUP-A

1. Answer any <i>four</i> questions from the following:	$3 \times 4 = 12$
(a) If α be a multiple root of order 3 of the equation $x^4 + bx^3 + cx + d = 0$ ($d \neq 0$)), 3
then show that $\alpha = \frac{-8d}{3c}$.	
(b) Applying Descarte's rule of signs, find the nature of the roots of	3
$x^6 + x^4 + x^2 + 2x + 5 = 0$	
(c) Find the product of all values of $(1+i)^{4/5}$.	3
(d) If <i>a</i> , <i>b</i> , <i>c</i> be three positive real numbers, then show that $\left(\frac{a+b+c}{3}\right)^3 \ge a\left(\frac{b+c}{2}\right)^2$.	3
(e) Verify Cayley-Hamilton theorem for the square matrix $\begin{pmatrix} 2 & 1 \\ 0 & 5 \end{pmatrix}$.	3
(f) Express $\frac{1+i\sqrt{3}}{1-i}$ in the polar form and hence find the value of $\sin\frac{5\pi}{12}$.	3

GROUP-B Answer any four questions from the following $6 \times 4 = 24$ If $x = \log \tan \left(\frac{\pi}{4} + \frac{y}{2} \right)$, then prove that $y = -i \log \tan \left(\frac{\pi}{4} + i \frac{x}{2} \right)$. 6 Reduce the equation $x^3 - 3x^2 + 12x + 16 = 0$ to its standard form and then solve the 6 equation by Cardon's method. Let *M* be an 3×3 real matrix with eigen values 2, 3, 1 and the corresponding eigen 6 vectors $(1, 2, 1)^t$, $(0, 1, 1)^t$, $(1, 1, 1)^t$ respectively. Determine the matrix M.

Let a, b, c, d be positive real numbers not all equal. Show that 5.

$$(a+b+c+d)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right) > 16$$

Determine the conditions for which the following system of equations 6.

$$x + y + z = b;$$

$$2x + y + 3z = b + 1;$$

$$5x + 2y + 9z = b^{2}$$

has (i) only one solution, (ii) no solution, (iii) many solutions.

7. Let S be a set containing n elements, where n is a positive integer. If r is an integer 6 such that $0 \le r \le n$, then show that the numbers of subsets of S containing exactly n!*r* elements is

$$\frac{1}{r!(n-r)!}$$

GROUP-C

Answer any two questions from the following	$12 \times 2 = 24$
8. (a) State and prove division algorithm.	6
(b) State the well ordering principle. Show that $2^{2n+1} - 9n^2 + 3n - 2$ is divisible by 54.	1+5
9. (a) If α , β , γ , δ be the roots of $x^4 - 3x^3 + 4x^2 - 5x + 6 = 0$, show that the value of $(\alpha^2 + 3)(\beta^2 + 3)(\gamma^2 + 3)(\delta^2 + 3)$ is 57.	6
(b) If $a_1, a_2, a_3, \dots, a_n$ be <i>n</i> positive real numbers, then show that	6
$\frac{s}{s-a_1} + \frac{s}{s-a_2} + \frac{s}{s-a_3} + \dots + \frac{s}{s-a_n} \ge \frac{n^2}{n-1}, \text{ where } s = a_1 + a_2 + a_3 + \dots + a_n.$	
10.(a) Show that the relation $a \equiv b \pmod{5}$ is an equivalence relation.	6
(b) If $\log \sin(\theta + i\phi) = \alpha + i\beta$, then prove that $2\cos 2\theta = e^{2\phi} + e^{-2\phi} - 4e^{2\alpha}$ and $\cos(\theta - \beta) = e^{2\phi}\cos(\theta + \beta)$.	6
11.(a) Find the eigen values and the corresponding eigen vectors of the matrix $ \begin{pmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & 2 & 0 \end{pmatrix} $	6
Further find the algebraic and geometric multiplicities of the eigen values.	
(b) If $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$, then show that for every integer $n \ge 3$, $A^n = A^{n-2} + A^2 - I$	4+2

Hence find A^{50} .

2.

3.

4.

6

MATHGE-III

DIFFERENTIAL EQUATION AND VECTOR CALCULUS

GROUP-A

Answer any *four* questions

 $3 \times 4 = 12$

 $6 \times 4 = 24$

1. Show that the functions
$$\{e^x, e^{2x}, e^{3x}\}$$
 are linearly independent solutions of the $d^3y = d^2y = d^2y = d^2y$

differential equation $\frac{d^3y}{dx^3} - 6\frac{d^2y}{dx^2} + 11\frac{dy}{dx} - 6y = e^{2x}.$

- 2. Solve: $\frac{d^4y}{dx^4} + m^4y = 0$
- 3. For what value of k, the straight lines $\vec{r} = (1, 2, 3) + t(2, 3, 4)$ and $\vec{r} = (k, 3, 4) + s(3, 4, 5)$ (where t, s are scalars) are coplanar.

4. Evaluate
$$\int_{1}^{2} \vec{r} \times \frac{d^2 \vec{r}}{dt^2} dt$$
, where $\vec{r} = 5t^2 \hat{i} + t\hat{j} - t^3 \hat{k}$

5. Solve the initial value problem $\frac{d^2 y}{dx^2} - 3\frac{dy}{dx} + 2y = 0$, $y = \frac{dy}{dx} = 3$ at x = 0.

6. Find particular integral of $(D^3 - D^2 + 3D + 5)y = e^x \cos x$.

GROUP-B

Answer any four questions

Given a vector field $\vec{V} = x\hat{i} + y\hat{j} + z\hat{k}$ in E^3 . Find $\operatorname{curl}\left(\frac{\vec{V}}{|\vec{V}|}\right)$.

8. Let $\vec{F} = xy\hat{i} + (x^2 + y^2)\hat{j}$. Then obtain $\int_{\Gamma} \vec{F} \cdot d\vec{r}$, where Γ is the arc of the parabola

$$y = x^2 - 4$$
 from (2, 0) to (4, 12).

- 9. Solve $(D^2 + 3D + 2)y = x + \cos x$ by method of undetermined co-efficient.
- 10. Solve the differential equation $\frac{d^2x}{dt^2} \mu x = 0$ with the condition x = a, $\frac{dx}{dt} = -V$ when t = 0.

11. Solve the system of differential equation $\frac{dx}{dt} + 2x - 3y = t$, $-3x + \frac{dy}{dt} + 2y = e^{2t}$.

12. Solve $(D^4 - 4D^2 - 5)y = e^x(x + \cos x)$ using D operator.

GROUP-C

Answer any *two* questions $12 \times 2 = 24$

13.(a) Solve:
$$(D^3 - 5D^2 + 7D - 3)y = e^{2x} \cosh x$$

(b) Solve:
$$\frac{dx}{dt} - \frac{dy}{dt} + 3x = \sin t$$
; $\frac{dx}{dt} + y = \cos t$, given that $x = 1$, $y = 0$ at $t = 0$.

14.(a) Find the series solution of
$$4x \frac{d^2 y}{dx^2} + 2 \frac{dy}{dx} + y = 0$$
. 8+4

(b) If \vec{r} be a position vector of a point and $\phi = \frac{1}{|\vec{r}|}$, then show that $\nabla \phi = -\frac{\vec{r}}{|\vec{r}|^3}$.

7.

6+6

- 15.(a) If $F = \phi \operatorname{grad} \phi$, then show that $F \cdot \operatorname{curl} F = 0$.
 - (b) If $\vec{F} = (3x^2 + 6y)\hat{i} 14yz\hat{j} + 20zx^3\hat{k}$, then evaluate $\int_C \vec{F} \cdot d\vec{r}$, from (0, 0, 0) to

(1, 1, 1) along the curve
$$x = t$$
, $y = t^2$, $z = t^3$.

16.(a) Solve
$$(x^2D^2 - xD + 4)y = \cos(\log x) + x\sin(\log x)$$
.

(b) Solve the following differential equation using method of variation of parameter

 $(D^2 - 2D + 2)y = e^x \tan x$

MATHGE-IV

GROUP THEORY

GROUP-A

	Answer any <i>four</i> questions from the following	$3 \times 4 = 12$
1.	Let H_1 , H_2 be two subgroups of a group G. Prove that $H_1 \cap H_2$ is also a subgroup of G.	3
2.	Find all generators of the group $(\mathbb{Z}_8, +_8)$.	3
3.	Show that a group of even order has an element of order 2 and that the number of elements of order 2 is odd.	3
4.	If <i>H</i> and <i>K</i> are two normal subgroups of a group <i>G</i> such that $H \cap K = \{e\}$, then show that $hk = kh \forall h \in H$, $k \in K$.	3
5.	Let \mathbb{R}^+ be the group of positive real numbers under multiplication and \mathbb{R} the group of all real numbers under addition. Then show that the map $\theta : \mathbb{R}^+ \to \mathbb{R}$ such that $\theta(x) = \log_e x$ is an isomorphism.	3
6.	If G and G' be two groups and $f: G \to G'$ be a homomorphism then show that $f(e) = e'$.	3

GROUP-B

	Answer any <i>four</i> questions from the following	6×4 = 24
7.	Let a be an element of a finite group G. Prove that $O(a) O(G)$.	6
8.	Let <i>H</i> be a subgroup of a group <i>G</i> . Then prove that $Ha = Hb$ if and only if $ab^{-1} \in H$, where $a, b \in G$.	6
9.	Define centre of a group. Prove that the centre of a group G is a subgroup of G .	6
10.	Prove that the set <i>H</i> forms a commutative group with respect to matrix multiplication, where $H = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a \in \mathbb{R} \text{ and } a^2 + b^2 = 1 \right\}.$	6
11.	Prove that a non-empty subset H of a group G is a subgroup of G if and only if $a, b \in H \Rightarrow ab^{-1} \in H$.	6
12.	Prove that the order of a cyclic group is equal to the order of its generator.	6
	GROUP-C	

$12 \times 2 = 24$ Answer any two questions from the following

7 13.(a) Prove that every group G is isomorphic to a permutation group. 5

(b) Let $f: G \to G'$ be a group homomorphism. Let $a \in G$ such that O(a) = n and

2059

6+6

6+6

O(f(a)) = m. Show that O(f(a)) | O(a) and f is one-one iff m = n.

- 14.(a) If *H* and *K* be subgroups of a group *G*, then show that $O(HK) = \frac{O(H)O(K)}{O(H \cap K)}$. 7
 - (b) If $f: G \to G'$ be a group homomorphism, then show that ker f is a normal subgroup of G.
- 15.(a) Prove that every quotient group of a cyclic group is cyclic.
 - (b) Prove that a group homomorphism $f: G \to G'$ is one-one iff ker $f = \{e\}$. 6
- 16.(a) Find all the group homomorphisms from $\mathbb{Z}_{20} \rightarrow \mathbb{Z}_8$. How many of these are onto?
 - (b) (i) Prove that a group G is commutative iff $(ab)^{-1} = a^{-1}b^{-1}$, $\forall a, b \in G$. 4+2
 - (ii) Examine whether (Z, ∘) forms a group with respect to the composition '∘' by a ∘ b = a + b + ab; a, b ∈ Z.

MATHGE-V

NUMERICAL METHODS

GROUP-A

- 1. Answer any *four* questions from the following:
 - (a) Prove that $\frac{\Delta}{\nabla} \frac{\nabla}{\Delta} = \nabla + \Delta$, where Δ and ∇ have their usual meaning.
 - (b) Define the degree of precision of a quadrature formula for numerical integration. What is the degree of precision of Simpson's $\frac{1}{3}^{rd}$ rule?
 - (c) Find the relative error in computation of x + y for x = 11.75 and y = 7.23 having absolute errors $\Delta x = 0.002$ and $\Delta y = 0.005$ respectively.
 - (d) What is the geometric representation of the Trapezoidal rule for integrating $\int_{a}^{b} f(x) dx$?
 - (e) If h=1 then find the value of $\Delta^3(1-x)(1-2x)(1-3x)$.
 - (f) Write down the equation $x^3 + 2x 10 = 0$ in the form $x = \phi(x)$ such that the iterative scheme about x = 2 converges.

GROUP-B

Answer any *four* questions from the following

- $6 \times 4 = 24$
- 2. If a number be rounded to *n* correct significant figures, then prove that relative error is less than $\frac{1}{k \times 10^{n-1}}$.
- 3. The third order differences of a function f(x) are constant and $\int_{-1}^{1} f(x) dx = k \left[f(0) + f\left(\frac{1}{\sqrt{2}}\right) + f\left(-\frac{1}{\sqrt{2}}\right) \right], \text{ then find the value of } k.$
- 4. Using Regula-Falsi Method, find a root of $x^3 + 2x + 2 = 0$, correct up to three significant figures.
- 5. Solve the following differential equation for x = 0.02 by taking step length

 $3 \times 4 = 12$

5

6

h = 0.01 by modified Euler's method:

$$\frac{dy}{dx} = x^2 + y$$
, $y = 1$ when $x = 0$

- 6. Establish Newton's backward interpolation formula.
- 7. Solve the system by Gauss-Seidel iteration method:

$$x + y + 4z = 9$$

$$8x - 3y + 2z = 20$$

$$4x + 11y - z = 33$$

GROUP-C

				Gl	ROU	Ј Р-С					
Answer any two questions from the following							$12 \times 2 = 24$				
8. (a)	8. (a) Estimate the missing term in the following table:							3			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
			f(x)	:) 1	3	9	-	81			
(b)	Explain the	e geometr	ical interp	retation	of S	imps	on's	$\frac{1}{3}^{rd}$ rul	e.		3
(c)	Show that equations h		-						the linear spectrum $n^3/3$.	ystem of <i>n</i>	6
9. (a)	Evaluate f	f(x) for x	x = 0.07 us	sing the	give	en val	ues:				6
		x	0.00	0.10		0.20)	0.30	0.40]	
		f(x)	1.0000	1.221		1.491		1.8221		-	
(b)	Using Ru	nge-Kutta	method	of orde	er 2	to c	alcu	late v((0.6) for th	e equation	6
	$\frac{dy}{dx} = x + y$	-						2		1	
10.(a)	Deduce an $f(x)$ with					n pol	ynon	nial inte	erpolation of	f a function	6
(b)		1	10 x dx tak	ing 8 su	b-in	terval	ls, co	orrect up	to four dec	imal places	6
	by Trapezo	oidal rule.									
11.(a)	Compute the matrix inve	ersion me			in th	e syst	tem (of equat	tions by Gau	iss Jordan's	6
		5x + 2	y + z = 18								
		2x + 3y	v + 3z = 10)							
(b)	Find the va	alue of $\int_{0}^{1} \frac{1}{1}$	$\frac{dx}{dx} + x^2$ taki	ng 5-sul	b-int	erval	s by	Simpso	m's $\frac{3}{8}^{\text{th}}$ rule	e, correct up	6
	to four sign	nificant fi	gures.								

__X___